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1 Introduction
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Figure 1: Form of Electric Machine
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This section of notes discusses some of the fundamental processes involved in electric
machinery. In the section on energy conversion processes we examine the two major
ways of estimating electromagnetic forces: those involving thermodynamic arguments
(conservation of energy) and field methods (Maxwell’s Stress Tensor). But first it is
appropriate to introduce the topic by describing a notional rotating electric machine.
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Electric machinery comes in many different types and a strikingly broad range of sizes,
from those little machines that cause cell ’phones and pagers to vibrate (yes, those are
rotating electric machines) to turbine generators with ratings upwards of a Gigawatt.
Most of the machines with which we are familiar are rotating, but linear electric motors
are widely used, from shuttle drives in weaving machines to equipment handling and
amusement park rides. Currently under development are large linear induction machines
to be used to launch aircraft. It is our purpose in this subject to develop an analytical basis
for understanding how all of these different machines work. We start, however, with a
picture of perhaps the most common of electric machines.

1 o =r-m

BE & SF1A conservation of energy
2 BT E J9E 2 Maxwell’s Stress Tensor
* & KL Gigawatt



2. BIEIIERE

B 1 2 RERZENREE - SRR E BRI - a]DUE RS2SR > KEl
J \Efma? PR bR T B A ] - BIEEA A RV EETT R ] DL RUER -

2 Electric Machine Description:

Figure 1 is a cartoon drawing of a conventional induction motor. This is a very common
type of electric machine and will serve as a reference point. Most other electric machines
operate in a fashion which is the same as the induction machine or which differ in ways
which are easy to reference to the induction machine.
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Most (but not all!) machines we will be studying have essentially this morphology. The
rotor of the machine is mounted on a shaft which is supported on some sort of bearing(s).
Usually, but not always, the rotor is inside. I have drawn a rotor which is round, but this
does not need to be the case. I have also indicated rotor conductors, but sometimes the
rotor has permanent magnets either fastened to it or inside, and sometimes (as in Variable
Reluctance Machines) it is just an oddly shaped piece of steel. The stator is, in this
drawing, on the outside and has windings. With most of the machines we will be dealing
with, the stator winding is the armature, or electrical power input element.(In DC and
Universal motors this is reversed, with the armature contained on the rotor: we will deal
with these later).
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In most electrical machines the rotor and the stator are made of highly magnetically
permeable materials: steel or magnetic iron. In many common machines such as
induction motors the rotor and stator are both made up of thin sheets of silicon steel.
Punched into those sheets are slots which contain the rotor and stator conductors.
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Figure 2 is a picture of part of an induction machine distorted so that the air-gap is
straightened out (as if the machine had infinite radius).This is actually a convenient way
of drawing the machine and, we will find, leads to useful methods of analysis.
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What is important to note for now is that the machine has an air gap g which is relatively
small (that is, the gap dimension is much less than the machine radius r). The air-gap also
has a physical length ¢. The electric machine works by producing a shear stress in the
air-gap (with of course side effects such as production of “back voltage”). It is possible to
define the average air-gap shear stress, which we will refer to as 7. Total developed torque
is force over the surface area times moment (which is rotor radius):
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Power transferred by this device is just torque times speed, which is the same as force
times surface velocity, since surface velocity is u= rQ:
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If we note that active rotor volume is the ratio of torque to volume is just:
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Now, determining what can be done in a volume of machine involves two things. First, it
is clear that the volume we have calculated here is not the whole machine volume, since
it does not include the stator. The actual estimate of total machine volume from the rotor
volume is actually quite complex and detailed and we will leave that one for later. Second,
we need to estimate the value of the useful average shear stress. Suppose both the radial
flux density B, and the stator surface current density K, are sinusoidal flux waves of the
form:

B, = V2B cos (pf — wt)

K. = V2K cos (pf — wt)
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Note that this assumes these two quantities are exactly in phase, or oriented to ideally
produce torque, so we are going to get an “optimistic”’ bound here. Then the average

¥ FRTHIHE surface velocity
2 4% 4] radial

¥ iR flux

2 TFBZ3Y sinusoidal wave

" #H phase

¥ FHZ | /7 surface traction



value of surface traction is:
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The magnetic flux density that can be developed is limited by the characteristics of the
magnetic materials (iron) used. Current densities are a function of technology and are
typically limited by how much effort can be put into cooling and the temperature limits of
insulating materials. In practice, the range of shear stress encountered in electric
machinery technology is not terribly broad: ranging from a few kPa in smaller machines
to about 100 kPa in very large, well cooled machines.
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It is usually said that electric machines are torque producing devices, meaning tht they
are defined by this shear stress mechanism and by physical dimensions. Since power is
torque times rotational speed, high power density machines necessarily will have high
shaft speeds. Of course there are limits on rotational speed as well, arising from
centrifugal forces which limit tip velocity.
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Our first step in understanding how electric machinery works is to understand the
mechanisms which produce forces of electromagnetic origin.
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3 Energy Conversion Process:

In a motor the energy conversion process can be thought of in simple terms. In “steady
state”, electric power input to the machine is just the sum of electric power inputs to the
different phase terminals:

Pe = Z Uﬂi
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Mechanical power is torque times speed:
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Figure 3: Energy Conversion Process
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And the sum of the losses is the difference:
P;=P.,— Py,
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It will sometimes be convenient to employ the fact that, in most machines, dissipation is
small enough to approximate mechanical power with electrical power. In fact, there are
many situations in which the loss mechanism is known well enough that it can be
idealized away. The “thermodynamic” arguments for force density take advantage of this
and employ a “conservative” or lossless energy conversion system.
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3.1 Energy Approach to Electromagnetic Forces:
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Figure 4: Conservative Magnetic Field System
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To start, consider some electromechanical system which has two sets of “terminals”,
electrical and mechanical, as shown in Figure 4. If the system stores energy in magnetic
fields, the energy stored depends on the state of the system, defined by (in this case)two
of the identifiable variables: flux (1), current (i) and mechanical position (x). In fact, with
only a little reflection, you should be able to convince yourself that this state is a
single-valued function of two variables and that the energy stored is independent of how
the system was brought to this state.
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Now, all electromechanical converters have loss mechanisms and so are not themselves
conservative. However, the magnetic field system that produces force is, in principle,
conservative in the sense that its state and stored energy can be described by only two
variables. The “history” of the system is not important.
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It is possible to choose the variables in such a way that electrical power into this
conservative system is:

A
PE = /'/ = ]—
(o Zdt

MIFEIHY - Z e AR R Fy



Similarly, mechanical power out of the system is:

pmo— f@d_x

dt
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The difference between these two is the rate of change of energy stored in the system:

aw,
m — Pe _ Pm
dt
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It is then possible to compute the change in energy required to take the system from one
state to another by:
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where the two states of the system are described by a =(4,, x,) and b =(4p, x5)
If the energy stored in the system is described by two state variables, 4 and x, the total
differential of stored energy is:
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So that we can make a direct equivalence between the derivatives and:
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In the case of rotary, as opposed to linear, motion, torque T ¢ takes the place of force f °
and angular displacement 4 takes the place of linear displacement x. Note that the product
of torque and angle has the same units as the product of force and distance (both have

31 #4114 angular displacement
2 LA % linear displacement
32—k Newton-meter
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units of work, which in the International System of units is Newton-meters or Joules.
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In many cases we might consider a system which is electrically linear, in which case
inductance is a function only of the mechanical position x.
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In this case, assuming that the energy integral is carried out from 4 =0 (so that the part of
the integral carried out over x is zero),

A I
Win = /0 L(x) AdA = 2 L(z)
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This is true only in the case of a linear system. Note that substituting L(x)i = 4 too early
in the derivation produces erroneous results: in the case of a linear system it produces a
sign error, but in the case of a nonlinear system it is just wrong.
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3.1.1 Example: simple solenoid
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Consider the magnetic actuator shown in cartoon form in Figure 5. The actuator consists
of a circular rod of ferromagnetic material (very highly permeable) that can move axially
(the x-direction) inside of a stationary piece, also made of highly permeable material. A
coil of N turns carries a current /. The rod has a radius R and spacing from the flat end of
the stator is the variable dimension x. At the other end there is a radial clearance between
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the rod and the stator g. Assume g<<R. If the axial length of the radial gaps is £ = R/2,
the area of the radial gaps is the same as the area of the gap between the rod and the stator
at the variable gap.
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Figure 5: Solenoid Actuator
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The permeances of the variable width gap is :
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and the permeance of the radial clearance gap is, if the gap dimension is small compared
with the radius:
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The inductance of the coil system is:
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Magnetic energy is :
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And then, of course, force of electric origin is:

W Nd 1
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Here that is easy to carry out:
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So that the force is:
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Given that the system is to be excited by a current, we may at this point substitute for
flux:
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And then total force maybe seen to be:
(z+g)* 2
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The force is ‘negative’ in the sense that it tends to reduce X, or to close the gap.
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3.1.2 Multiply Excited Systems

There may be (and in most electric machine applications there will be) more than one
source of electrical excitation (more than one coil). In such systems we may write the
conservation of energy expression as:
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which simply suggests that electrical input to the magnetic field energy storage is the sum
(in this case over the index k) of inputs from each of the coils. To find the total energy
stored in the system it is necessary to integrate over all of the coils (which may and in
general will have mutual inductance).

Wm = /LdA
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Of course, if the system is conservative, W,,(4;,4,,. . . ,x) is uniquely specified and so the
actual path taken in carrying out this integral will not affect the value of the resulting
energy.
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3.1.3 Coenergy

We often will describe systems in terms of inductance rather than its reciprocal, so that
current, rather than flux, appears to be the relevant variable. It is convenient to derive a
new energy variable, which we will call co-energy, by:

ern = Z /\ILL — Wi

fhpa (BE—TREE8D) sEEAVMITRTS -

and in this case it is quite easy to show that the energy differential is (for a single

¥ WAL co-energy
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mechanical variable) simply:

AW, =Y Nediy, + fCdx
k
P ER ) Ry
so that force produced is:
6W7/71,
T
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3.2 Example: Synchronous Machine

Figure 6: Cartoon of Synchronous Machine
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Consider a simple electric machine as pictured in Figure 6 in which there is a single
winding on a rotor (call it the field winding and a polyphase armature with three identical
coils spaced at uniform locations about the periphery. We can describe the flux linkages
as:

Ao = Laiaq + Lapip + Lapic + M COS(pe)if
2m .
Ao = Lapiq + Laiy + Lapic + M cos(pl — ?)Zf

2
Ae = Lgpiy + Lapip + Lgic + M COS(p@ + ?F)Zf
) 27 . 2 .
A¢ = Mcos(pf)iq + M cos(pf — ?)Zb + M cos(pf + ?) + Lyiy
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It is assumed that the flux linkages are sinusoidal functions of rotor position. As it turns
out, many electrical machines work best (by many criteria such as smoothness of torque
production) if this is the case, so that techniques have been developed to make those flux
linkages very nearly sinusoidal. We will see some of these techniques in later chapters of
these notes. For the moment, we will simply assume these dependencies. In addition, we
assume that the rotor is magnetically 'round’, which means the stator self inductances and
the stator phase to phase mutual inductances are not functions of rotor position. Note that
if the phase windings are identical (except for their angular position), they will have
identical self inductances. If there are three uniformly spaced windings the phase-phase
mutual inductances will all be the same.
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Now, this system can be simply described in terms of coenergy. With multiple excitation
it is important to exercise some care in taking the coenergy integral (to ensure that it is
taken over a valid path in the multi-dimensional space). In our case there are actually five
dimensions, but only four are important since we can position the rotor with all currents
at zero so there is no contribution to coenergy from setting rotor position. Suppose the
rotor is at some angle 6 and that the four currents have values i, ip, ico and ip. One of
many correct path integrals to take would be:

0 %48 polyphase
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Note here that the first integral is taken over i, with i, = i. = i = 0, and the second
integral is over i, with i, = iy and i. = iy = 0, etc.
The result is:

W= ir <z’2 + iy + 12 ) + Lap (iaoito + iaoico + icolo)

m 2 a \ a0 b0 co ab \tao?b0 aolcO bcotb0
. . . 2 . 2T 1.
+Mi o (Zao cos(pf) + iy cos(pd — ?) + ico cos(pd + ?)) + §Lf@3°0
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Since there are no variations of the stator inductances with rotor position 6, torque is
easily given by:

ow), 5 )
T, = 89m = —pMiyo (iao sin(pf) + ipo sin(ph — ?ﬂ) F gy sin(ph + §)>

3.2.1 EREEINED
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3.2.1 Current Driven Synchronous Machine

Now assume that we can drive this thing with currents:
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iagn = Jgcoswt
) 2
ipg = Jgcosw |t— —

3

2m
ig = Iacosw(t—i-—r)

3
ifo = If

L @ BAUSE 2~ 3 ARV BRI A sER - SRAEZAT )

i, =1,coswt

2z
i,o =1, cos a)t—?
i, =1,cos a)t+?

:If
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and assume the rotor is turning at synchronous speed:
pl = wt + 0

[Kcosxsiny = %sin(x— y) +%sin(x+ y) o _EattaEEsE R DI R By

Noting that cos x*sin y = 1/2sin(x - y) + 1/2sin(x + y), we find the torque expression
above to be:

1 1
T, =-—pMlI,Iy (E sind; + = 5 sin (2wt + &; })

+ (%Sinﬁg—késin (2wt—|—5 — %r))

1. 1. A
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T, =-pMI I {[ésm5 +—sm(2a)t+5)}

a” f
1 1

+|—sin &, + —sin| 2ax + J, ——
2 2

+[lsm5 +lsm(20)t+§ +4—”ﬂ}
2 2 3
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The sine functions on the left add and the ones on the right cancel, leaving:

3
T. = —§pM’IaIf sin 0;
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And this is indeed one way of looking at a synchronous machine, which produces steady
torque if the rotor speed and currents all agree on frequency. Torque is related to the
current torque angle d;. As it turns out such machines are not generally run against current
sources, but we will take up actual operation of such machines later.

ign = Jgcoswt
. 2m
iy = Ijcosw (z‘ — —)
3

_ 2w
iqg = I cosw (z‘ + ?)
ifp = Iy

nl = wi+ 8;
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4 Field Descriptions: Continuous Media

While a basic understanding of electromechanical devices is possible using the lumped
parameter approach and the principle of virtual work as described in the previous section,
many phenomena in electric machines require a more detailed understanding which is
afforded by a continuum approach. In this section we consider a fields-based approach to
energy flow using Poynting’s Theorem and then a fields based description of forces using
the Maxwell Stress Tensor. These techniques will both be useful in further analysis of
what happens in electric machines.

4.1 DIBGSSHEMAERT © WENREEE
ek e EE R

1 Tl principle of virtual work
2 HEIFE E ! Poynting’s Theorem
43 SER 5 E{# Faraday’s Law
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4.1 Field Description of Energy Flow: Poyting’s Theorem

Start with Faraday’s Law:

_ 0B
VxE= *E
TR
and Ampere’s Law:
VxH=1T

F—FIELLH M FRLLE » ARERAA » &

Multiplying the first of these by H and the second by E and taking the difference:

-E-J

Q
o
”*|CU1

E-VXE—E-VXHT:V-(EXH):—ET-

N fofin N == 74 =N 45 .
EAES B R B RIS
On the left of this expression is the divergence of electromagnetic energy flow:

S=ExH
MR S BRI EN =55 gk REMES ISR (HEPEEAB R, EHA

—

R ) HBAMHA I?-%%;%%EQQ%VQE%T?EEQEE%§§1EQE? S TIHE - T BRAIRGIE
REVDR » A EESRNE G - R AR R E RS are g E L

Here, 5§ is the celebrated Poynting flow which describes power in an electromagnetic
field sysstem. (The units of this quantity is watts per square meter in the International

System). On the right hand side are two terms: H- 22 s rate of change of magnetic

stored energy. The second term, E -.J looks a lot like power dissipation. We will
discuss each of these in more detail. For the moment, however, note that the divergence
theorem of vector calculus yields:

f V-gdv:# S fida
volume

TR E S RE BRIV Be i 1 FIE s R B R BV I NS RE B S - BRI =0T
LIES By
that is, the volume integral of the divergence of the Poynting energy flow is the same as
the Poynting energy flow over the surface of the volume in question. This integral
becomes:

M gzpmoEiE Ampere’s Law
4 B0RE divergence
* JEEI=7% Poynting flow
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#S‘-ﬁda:ff Ef+ﬁ@ dv
volume ot

T DR R R — = s E RV RE & - FEE N FRE B LRI EE
DHRAHESZ EEVEGTE Y - RS AR Z Al S ERAR RGN ETY)
BHIRE) - w] DU &R A SR ENR YRS AR o T —2Ut > s
FREARAR B A IOEREVHE SR DA 2R RS E -

which is simply a realization that the total energy flow into a region of space is the same
as the volume integral over that region of the rate of change of energy stored plus the
term that looks like dissipation. Before we close this, note that, if there is motion of any
material within the system, we can use the empirical expression for transformation of
electric field between observers moving with respect to each other. Here the ’primed’

frame is moving with respect to the unprimed’ frame with the velocity 7

F =FE+7xB
A TG — (B BN EERG - PIIET - BRGNS T2 E - ]
WEYIEEFTR R RS NEE)  MHEE R 7 DS A EERHEZR P (H
TREVEARGIIEZE) FILUHIEEIE" > ARSI R 2 R by -
This transformation describes, for example, the motion of a charged particle such as an

electron under the influence of both electric and magnetic fields. Now, if we assume that
there is material motion in the system we are observing and if we assign T to be the

velocity of that material, so that E" measured in a frame in which thre is no material
motion (that is the frame of the material itself), the product of electric field and current
density becomes:

E.-J= (E’—-ﬁ’x E)-f:E’-f— (ﬁx E") -f:E’-f+ﬁ-(f>< é)
PP B4 = B EE - 4hE AR (BRESR) Bt (R (1
NEFFRT AG 3 5 TS (AR ) JRRIIAFP ROB AR & e B nI ok - B3
sTRAVARRE S
In the last step we used the fact that in a scalar triple product the order of the scalar (dot)
and vector (cross) products can be interchanged and that reversing the order of terms in a

vector (cross) product simply changes the sign of that product. Now we have a ready
interpretation for what we have calculated:

G NIRRIEEAE 240 2R B DS

If the "primed’ coordinate system is actually the frame of material motion,

[
E'-J=—J?
a

7 4di & scalar
* 158 vector
¥ BB 2.4 coordinate system
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which is easily seen to be dissipation and is positive definite if material conductivity o is
positive. The last term is obviously conversion of energy from electromagnetic to
mechanical form:

7 (fx B) — 3. F
AP RSB E - B

where we have now identified force density to be:

F=JxB

BEENER ML EE R R R S E A E AL E AT - (B IEHE 4
SNEEERIFTA T - PRI A0S - O R AR RS R IRt & A2 A )
SESF R PR R0 AT LUTE o AU EE Y 7 - iSRS N — B £

This is the Lorentz Force Law, which describes the interaction of current with magnetic
field to produce force. It is not, however, the complete story of force production in
electromechanical systems. As we learned earlier, changes in geometry which affect
magnetic stored energy can also produce force. Fortunately, a complete description of
electromechanical force is possible using only magnetic fields and that is the topic of our
next section.

4.2 DIy - R R IRE

TR LN TR B RIIATI(G  RIEERRCR - I S S LY
RN REATLIEHEL - I F o AR B e e - BIfERN
YR IE By IR R SRS By S | B RS -

4.2 Field Description of Forces: Maxwell Stress Tensor

Forces of electromagnetic origin, because they are transferred by electric and magnetic
fields, are the result of those fields and may be calculated once the fields are known. In
fact, if a surface can be established that fully encases a material body, the force on that
body can be shown to be the integral of force density, or traction over that surface.

—Hitkes (R b)) VRRREER & ST S X EmEenEs ) ¢ -’
(EE Y Lorentz JIERMBIGAER + RENEEREE (HE) MBS
& (FIE ) (ST E R RLE DRI - (B R Ry B in &8 EiiEibkt -
BfE) 2 A o] RAVER - WSt S SRR A TT NIRRT s Akl 2
EIEEAT] - TREHEREEAR

The traction 1 derived by taking the cross product of surface current density and flux
density on the air-gap surface of a machine (above) actually makes sense in view of the
empirically derived Lorentz Force Law: Given a (vector) current density and a (vector)
flux density. This is actually enough to describe the forces we see in many machines, but

0 (a7 7 E FE Lorentz Force Law
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since electric machines have permeable magnetic material and since magnetic fields
produce forces on permeable material even in the absence of macroscopic currents it is
necessary to observe how force appears on such material. A suitable empirical expression
for force density is:

F=JTxB-
it H RREE58E  p SRR R -
R R BRI LA

Where H is the magnetic field intensity and u is the permeability.
Now, note that current density is the curl of magnetic field intensity, so that:

(ﬁﬁ) Vi

s

b =

Fo= (VxA)xufl -5 (0-7)Vp
= w(Vx H)xd ~ 3 (- H)Vn
A
And, since:
(V< H)xH=(H V)H -5V (# H)
BT R

Force density is:

- _ 1 /= =
- (i) ()
BT BRE > IS | S8R
This expression can be written by components: the component of force in the i’th
dimension is:

B o\, 0 (1 )
= () 3 (33 )
EFEE—TH AT AL

The first term can be written as:

a a a
#-; (de—m) H; = ; Tmﬂ'ﬂkﬂi - H; ; a—%uﬂk

BATA R Ryl i EEUS > HER O
The last term in this expression is easily shown to be divergence of magnetic flux density,
which is zero:

1 yERE curl
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Using this, we can write force density in a more compact form as:

_ 0 . s 2
F, = B, (,uHin - 202;9 ;Hn)
A AT T Kroneker 8 0 & i=k All dx =1 &R d=0
s L S TH R R E AR RIRE
where we have used the Kroneker delta ; =1 if i = k, O otherwise.
Note that this force density is in the form of the divergence of a tensor:

o

T
QA5

or

F=v.-T
FERETEN - &R FYIRCRE P E IR L& - AIE R e ey 0 m] DU B e
A
In this case, force on some object that can be surrounded by a closed surface can be found
by using the divergence theorem:

:f.. F;d’lﬁ: lvgd'y:# gﬁ;da
S B RREOES R =Y, Tyn, R n BREOIERER - J i J7EE4E
ik

or, if we note surface traction to be
then the total force in direction i is just:

Ti =2k T“-‘n*‘, where n is the surface normal vector,

f: jg*rz-da = fZTiknkda
k
frfg i e LB AN ITEERE - SRy Nt R mZES [ ] (BLERmE
ﬁlﬁ%ﬁﬁ’]ﬁ)ﬂ’ﬁ%ﬁﬁ% o RFEES TR YIRS IR Bl UGS S YIRe 2 R T -
AR AN FH MENR G REREE - ARNEEBEI T 0 Bk

= Zk ik = Tigng,
The interpretation of all of this is less difficult than the notation suggests. This field

description of forces gives us a simple picture of surface traction, the force per unit area
on a surface. If we just integrate this traction over the area of some body we get the
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whole force on the body.
Note one more thing about this notation. Sometimes when subscripts are repeated as they

are here the summation symbol is omitted. Thus we would write 7i = >k Tirn = Tixng,

4.3 ] : &R ENE

7T EIFE LAV REBRIERIERE - BIRAVGRIERIERIIRE[EE T - ERE&KH
B Emas > FMHELLET TR T > AT AR A EIE — Ry E %S -

4.3 Example: Linear Induction Machine

Figure 7 shows a highly simplified picture of a single sided linear induction motor. This
is not how most linear induction machines are actually built, but it is possible to show
through symmetry arguments that the analysis we can carry out here is actually valid for
other machines of this class.

etas el —(EE T (B3R - DSEMERNREEINE L Bl e
R T — B A - BB (EE R T T MBI E TR By
£ x JTREE) - E TR A ER A ERE R

This machine consists of a stator (the upper surface) which is represented as a surface
current on the surface of a highly permeable region. The moving element consists of a
thin layer of conducting material on the surface of a highly permeable region. The
moving element (or “shuttle’) has a velocity u with respect to the stator and that motion is
in the x direction. The stator surface current density is assumed to be:

K, = Re {Leﬂwt*’m)}

K
g z
U — co / | y
0] : |
— U

(@)
\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\@&\\\\\\\\\\\\\\\\\\\\\\ X
u— o

K
GS s

7 BEARVERER R B AR
Figure 7: Simple model of single sided linear induction machine

BB AT RS — L B BE - PIE TRk FIVATR RS2 2 - SRS LR
JEMEEE - BRMAGEFREEN R - RAESUEER R ERABIEE -
Note that we are ignoring some important effects, such as those arising from finite length
of the stator and of the shuttle. Such effects can be quite important, but we will leave
those until later, as they are what make linear motors interesting.

52} shuttle
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Viewed from the shuttle for which the dimension in the direction of motion is x’ - x — ut’,
the relative frequency is:

wt — kr = (w—ku)t — k' = wst — ka'
R E A LUREER - HZ B8 HE FERERUSEIES mEEE L » 3K
fe] DLE B EREAE TR E R A E T B A ENE R > B

Now, since the shuttle surface can support a surface current and is excited by magnetic
fields which are in turn excited by the stator currents, it is reasonable to assume that the
form of rotor current is the same as that of the stator:

K; =Re {Ksej(wstfktzn’)}
TEMEEN » 2R ey

Ampere’s Law is, in this situation:

gaHy =K, + K;
Ox
HAG 8y
which is, in complex amplitudes:
_ K.+ K,
7 —jkyg

BEltbim -5 RS AR E RN y- TR R
The y- component of Faraday’s Law is, assuming the problem is uniform in the z-
direction:

_jwsﬁy = ]kﬂ/z
Al

or

E.= -,
KR HRABUER - ] DU SR | BN R PR 5 1 R R

A bit of algebraic manipulation yields expressions for the complex amplitudes of rotor
surface current and gap magnetic field:

A HOWsTs
K, = — 1
N = 1_’_]77111“.«)505 E4 WY
w oo LI
1 ]{ql—l—jmuowsgs

AEREZES 7 MRS el R T R E AR e T N EARYEE (e b

3 ¥ {E#E complex amplitude
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x-JTEMHEGRI R H , = K

° ) FLAZES (TR

To find surface traction, the Maxwell Stress Tensor can be evaluated at a surface just

below the stator (on this surface the x-directed magnetic field is simply H, =K. Thys
the traction is

Ty = T;z:y = ,U/OHxHy

HAPE R
And the average of this is:
_ __ Mo
<7e >=FRe {H.H,+}
HE
This is:

o1 B[
2RO 1 ()’

IRHZENFEEER - 1F y-J7 [AIAVEEREEN A Ky
Now, if we consider electromagnetic power flow (Poynting’s Theorem): in the
y-direction:

SU = EZHr
\ , @
BT AR E. =
TP El = ey H,
And since in the frame of the shuttle = i Hoily
1 ) HO‘:‘t)sUs ( .
<8 —_iﬁ k%g ‘_2’2_7;<Ta >

FEIEIY » AEE TAIRERPIETSE

Similarly, evaluated in the frame of the stator:

w
<Sg,>:—E<r—x>

3R ¢ E T ARSI TV B RLUN R  IRAM T EMTIRE
MHEHTIERETELL T AR | - LRI 2 7% R iy X 2 1y ‘Mﬁ%gxu&
TR -

This shows what we already suspected: the electromagnetic power flow from the stator is
the force density on the shuttle times the wave velocity. The electromagnetic ower flow
into the shuttle is the same force density times the ’slip’ velocity. The difference between
these two is the power converted to mechanical form and it is the force density times the
shuttle velocity.
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4.4 Rotating Machines

The use of this formulation in rotating machines is a bit tricky because, at lest formally,
directional vectors must have constant identity if an integral of forces is to become a total
force. In cylindrical coordinates, of course, the directional vectors are not of constant
identity. However, with care and understanding of the direction of traction and how it is
integrated we can make use of the MST approach in rotating electric machines.

AR MEIE A E B AV - st EEERY IR - BT T AREREAER I E LR
BB EREALAE - FrPAEENZES R

Now, if we go back to the case of a circular cylinder and are interested in torque, it is
pretty clear that we can compute the circumferential force by noting that the normal
vector to the cylinder is just the radial unit vector, and then the circumferential traction
must simply be:

79 = poHrHp

(BN R A TS - BArHRERE R GE AR - EHERETRER
GE BN IRIR 2/ Nt —(EE R R 24 - HOEGESN . S —(EE A
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Assuming that there are no fluxes inside the surface of the rotor, simply integrating this
over the surface gives azimuthal force. In principal this is the same as surrounding the
surface of the rotor by a continuum of infinitely small boxes, one surface just outside the
rotor and with a normal facing outward, the other surface just inside with normal facing
inward. (Of course the MST is zero on this inner surface). Then multiplying by radius
(moment arm) gives torque. The last step is to note that, if the rotor is made of highly
permeable material, the azimuthal magnetic field just outside the rotor is equal to surface
current density.

5. HEMEHN—HAT
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5 Generalization to Continuous Media

Now, consider a system with not just a multiplicity of circuits but a continuum of

> el rotating machine
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current-carrying paths. In that case we could identify the co-energy as:

Wk:ﬂ/ ‘/Aﬁﬂfwﬁ

area

A YR BT A SR SRS » R EIRAVENE K 0 LIRS o] DUEE Ry — (%
THNEAR ) BH - WRAREE S E RS TR (HRERERUER 0 B
DIFFAERERE ) © RIRZAR Ry -

where that area is chosen to cut all of the current carrying conductors. This area can be
picked to be perpedicular to each of the current filaments since the divergence of current
is zero. The flux 4 is calculated over a path that coincides with each current filament
(such paths exist since current has zero divergence). Then the flux is:

Mm:fﬁdﬁ
RS A > BROEEER

Now, if we use the vector potential A for which the magnetic flux density is:

B=VxA
R —4l T A SR A By -
the flux linked by any one of the current filaments is:
M@:%Edﬁ

b dl BB GRS - I EBEORERE B
Where d/ is the path around the current filament. This implies directly that the

coenergy is:
w%:f ff@dmiﬁ
area JJ

AU dY F da [F 51 0 SEERAER AR T 0 B -
Now: it is possible to make d/ coincide with dd and be parallel to the current filaments,
so that:

5.1 Tk B
IR A MG BRI RAGR B B T o EOK ARSI 280 o FH EE e AU 5

55 4mEE 44 current filament
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5.1 Permanent Magnets

Permanent magnets are becoming an even more important element in electric machine
systems. Often systems with permanent magnets are approached in a relatively ad-hoc
way, made equivalent to a current that produces the same MMF as the magnet itself.

IR BISEN Z 8 > RS B ~ REE98E H ARS8 M 2 Rty -

The constitutive relationship for a permanent magnet relates the magnetic flux
density B to magnetic field H and the property of the magnet itself, the
magnetization M .

—

B = puyg (ﬁ—i— ]\7[>
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Now, the effect of the magnetization is to act as if there were a current (called an
amperian current) with density:

J =V x M
bz dE ey TERH | s — M A S FE AV EE R - AT RE

Note that this amperian current ‘acts" just like ordinary current in making magnetic flux
density. Magnetic co-energy is:

W), = / AV x dMdv
vol
HA > mEEHEEER - V-(CxD)=D-(VxC)-C-(VxD)

Next, note the vector identity 77 . (ﬁ . ﬁ) - 0. (v w ﬁ) _a. (v w fj) Now,

W= /VO1 V- (AxdM)dv+ | (Vx A)- il

N B=VxA
Then, nothing that B =V x 4:

W= # Axdiids+ [ B-ditde
vol
BEAESHE—TE (BASTER) SEYssMyRmEERE S > RWEM B0 HeEy
5 o HAE—EK AMESRIEN 248 - HRGHHEE Fy

%6 pirEh%s Magnetomotive Force, MMF
37 2278 amperian current
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The first of these integrals (closed surface) vanishes if it is taken over a surface just

outside the magnet, where M is zero. Thus the magnetic co-energy in a system with
only a permanent magnet source is

W) = | B-dMdv
vol

HEIE AV B R 58t - B IR TA -

Adding current carrying coils to such a system is done in the obvious way.
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